
International Journal of Software Engineering and Computer Systems (IJSECS) 

ISSN: 2289-8522, Volume 4 Issue 1, pp. 48-60, February 2018 

©Universiti Malaysia Pahang 

https://doi.org/10.15282/ijsecs.4.1.2018.4.0037 

48 

 

AN APPROACH TO INCREASE THE EFFECTIVENESS OF TLC 

VERIFICATION WITH RESPECT TO THE CONCURRENT STRUCTURE OF 

TLA+ SPECIFICATION 

 

Vadym Viktorovych Shkarupylo¹*, Igor Tomičić², Kostiantyn Mykolaiovych 

Kasian¹ and Jamil Abedalrahim Jamil Alsayaydeh³ 

 

¹Computer Systems and Networks Dept., Zaporizhzhya National Technical University, 

69063, Zhukovsky st., 64, Zaporizhzhya, Ukraine, 

²Faculty of Organization and Informatics, University of Zagreb, 

42000, Pavlinska, 2, Varazdin, Croatia, 

³Faculty of Engineering Technology, Technical University of Malaysia Malacca 

76100, Durian Tunggal, Melaka, Malaysia 

 

E-mail: vadshkar@yandex.ua*, igor.tomicic@foi.hr, konst_k@yahoo.com, 

jamil@utem.edu.my 

ABSTRACT 

Modern approaches to distributed software systems engineering are tightly bounded 

with formal methods usage. The effective way of certain method application can 

leverage significant outcome, in terms of corresponding time costs reduction for 

instance. To this end the TLC model checker has been considered – with respect to 

TLA+ specifications with concurrent structure. The concurrency itself has been 

implemented as interleaving. Two different approaches to TLC model checking have 

been used. The first approach is based on model checking via breadth-first state space 

search (BFS), the second one – via depth-first search (DFS). The main result of a paper 

is the new approach to increasing the effectiveness of TLC verification with respect to 

the concurrent structure of TLA+ specification. To analytically represent synthesized 

TLA+ specifications with concurrent structure, the Kripke structure has been taken. To 

assess the measures of state space explosion problem, taking place during the 

experimentation, the appropriate estimations have been proposed. These estimations 

have been proved during the case study. The composite web service usage scenario has 

been considered as a case study. The results, obtained during the experimentation, can 

be used to increase the effectiveness of automated TLC verification with respect to the 

concurrent structure of TLA+ specification. 

 

Keywords: TLC, TLA+, Model Checking, BFS, DFS. 

INTRODUCTION 

These days formal methods (model checkers in particular) are intensively used in 

different spheres of engineering. One of those are the distributed software systems. 

Designing certain software system, it's vital to periodically check, whether current 

solution actually meets the specified requirements. Here the another question arises – 

whether we can conduct such checking in an automated manner. This peculiarity is 

especially important in context of iterative development. To this end, to check in an 

automated manner whether our current design solution meets the specified 



An approach to increase the effectiveness of tlc verification with respect to the concurrent structure of tla+ specification 

49 

 

requirements, the formal verification is going to be considered from the model checking 

viewpoint. 

Our attention has been put on the TLC (TLA Checker) model checker (Lamport, 

2002). This method has already proved its applicability, having been successfully used 

to find the design flaws in Amazon Web Services for instance (Newcombe, Rath, 

Zhang, Munteanu, Brooker & Deardeuff, 2015). Moreover, this method is aimed at 

mathematically rigorous and easy reconfigurable TLA+ specifications (Temporal Logic 

of Actions) automated verification. Named formalism provides the abilities to create 

specifications with the desired level of abstraction, grounding on an "action" concept – 

the specification of relation between some current and subsequent states of system's 

formal model. This level can be subsequently increased/decreased during the designing, 

which leverages the flexibility with respect to the altering nature of requirements. In our 

work the specification is being considered as a composition of parallel and sequential 

constructs. 

To proceed further, let's consider the Software Development Life Cycle (SDLC) 

with respect to iterative model (Larman, 2004). In accordance with this model, each 

iteration is a sequence of the following stages (phases): requirements analysis, 

designing, implementation and testing. We put our focus on the second phase – the 

designing. During this process a bunch of various models and specifications with 

different levels of abstraction are being created. It's vital here to operate with correct 

and unambiguous specifications – to lessen the expenses, taking place within the 

forthcoming phases – implementation and testing in particular. 

The altering nature of different modern business scenarios prompts the necessity 

to deploy scalable and easy reconfigurable solutions. To this end the principles of 

Service Oriented Architecture (SOA), e.g., reusability, interoperability, composability, 

can be utilized (Martini & Paganelli, 2016). The key concept here is the Composite 

Web Service (CWS). In our work the CWS is considered as a system. The components 

of such system are some other services (atomic or composite). We contemplate the 

scenario, when system functioning is provided by way of orchestration – centralized 

coordination (invocation) of system's components. 

The exhaustive overview of SOA- and cloud-related SDLCs has already been 

conducted (Tran & Feuerlicht, 2016). It can be seen that the number of distinguished 

SDLC-phases and the phases set itself vary significantly. For instance, SOA-related 

SDLC can be considered as follows: requirements analysis, services discovery, 

negotiation, composition and consumption. With respect to this model our focus is put 

on a composition phase – to check the consistency of system's components. 

To sum up, the main insight of our work is that modern SDLC of distributed 

software system is almost unimaginable without formal verification being conducted. 

The corresponding verification-related time costs influence the overall SDLC-related 

expenses, more or less. This influence is even more essential, when iterative SDLC 

takes place. To diminish this effect – to lessen the verification-related time costs – the 

model checking method has to be used properly, in particular. To this end the TLC 

method is being considered in our work from the efficiency viewpoint. We are willing 

to find out whether the effectiveness of TLC method usage actually depends on a 

structure of certain TLA+ specification to be verified in an automated manner by way of 

model checking. And if it is, whether we can influence this effectiveness (in terms of 

corresponding time costs reduction) by using the right approach to TLC-driven model 

checking – by way of breadth-first state space search (BFS) or by way of depth-first 

search (DFS). The preliminary work has already been done: the investigation of TLC 



Vadym Viktorovych Shkarupylo /International Journal of Software Engineering and Computer Systems 4(1) 2018 48-60 

50 

 

with respect to TLA+ specification with solely sequential structure has been conducted 

(Shkarupylo, Tomičić & Kasian, 2016). Both approaches (the BFS- and the DFS-driven 

one) have been used. It has been found out that DFS-driven approach is about two times 

more effective, comparing to BFS-driven alternative, but the following drawbacks also 

take place: the necessity to manually specify the depth of state space search, which 

directly harms the model checking process in terms of automation. Taking into 

consideration all the aforesaid, we are willing to find out whether the effectiveness of 

TLC method usage actually depends on a structure of TLA+ specification. 

PROBLEM STATEMENT 

Given a set of TLA+ specifications with concurrent structures. 

Let's consider the effectiveness of TLC method usage from the verification-

related time costs viewpoint. There are two approaches to TLC method usage 

distinguished: model checking by way of BFS and by way of DFS. 

Let's consider CWS as a system (Shkarupylo, 2016). Let's assume that CWS is 

represented with WS-BPEL-description (Web Services Business Process Execution 

Language), which is the implementation of centralized orchestration model 

(Mecheraoui, Belala & Saïdouni, 2016). According to this model, the components of 

CWS are depicted with <invoke> tags. Each <invoke> tag is a certain web service to be 

invoked. 

To analytically represent TLA+ specification, the Kripke structure on a set of 

atomic prepositions AP  has been used (Clarke, Grumberg & Peled, 2001): 

 

  LRsS ,,, 0 ,        (1) 

 

where S  – finite set of states, Ss 0  – initial state, 2SR   – set of transitions, 
APSL 2:   – states labeling function. 

The S  set is as follows: 

 

DVS  ,        (2) 

 

where  nivV i ,...,2,1  – set of state variables: Nn  is a number of CWS's 

components – the amount of <invoke> tags in WS-BPEL-description;  1,0D  – set of 

values. 

To unify the experimentation process, the analytical model of automatically 

synthesized TLA+ specification has to be proposed. This model should provide the 

scalability to get specifications for CWSs with different numbers of components. 

To assess the effectiveness of TLC method usage with respect to the concurrent 

structure of TLA+ specification, the estimations of model checking tasks to be solved 

have to be proposed. These estimations have to be proved experimentally. 

The experimentation has to be conducted by using two approaches to TLC 

model checking – the BFS- and the DFS-driven one. Corresponding results have to be 

compared in terms of effectiveness. 

To generalize the conclusion on TLC method usage effectiveness, the obtained 

results (with respect to the concurrent structures of TLA+ specifications) have to be 

compared to the ones, obtained previously (with respect to solely sequential structures 

of specifications). 



An approach to increase the effectiveness of tlc verification with respect to the concurrent structure of tla+ specification 

51 

 

APPROACH DESCRIPTION 

Let's suppose that there are two groups of TLA+ specifications – the specifications with 

purely sequential structures (first group) and the ones with concurrent structures (second 

group). 

To synthesize the first-group specifications the <sequence> and <invoke> tags 

have been used as a basis. The <sequence> tag – as the representative of WS-BPEL 

Structured Activities group. The <invoke> tag – as the element of WS-BPEL Basic 

Activities group. To synthesize the second-group specifications, the <flow> tags from 

Structured Activities group have also been considered. 

Let's consider the V  set (Eq.(2)): Vvi   there are only two possible Boolean 

values allowed – false (0) or true (1). Now let's talk in terms of atomic prepositions – to 

interpret the elements of AP  set (Eq.(1)). For instance, the   APvi  0  atomic 

preposition means that some i -th component of CWS hasn't yet been invoked. On the 

contrary, if   APvi 1  takes place, then it has already been invoked. 

Let's consider the first-group specification. The precondition for  1i -th 

component invocation can be represented with   APvi 1  atomic preposition. This 

means that i -th component has already been invoked. In this case 1 nS : 

        0,...,0,0 210  nvvvsL ,            0,...,0,1 2101  nvvvsRLsL , ... 

           1,...,1,1 211   nnn vvvsRLsL , where Ssn   is the final state to be 

reached during the automated TLC verification. The more detailed view on TLA+ 

specifications with solely sequential structure has already been provided (Shkarupylo 

et al., 2016). 

Now let's take a look at TLA+ specifications with concurrent structures. Let's 

represent the concurrency as interleaving. Let's suppose that the structure of any TLA+ 

specification is binary tree-like. This decision has been made to obtain scalable and 

demonstrative solutions. The vertices of such structures are pre- and post-conditions for 

components invocations. The invocation itself is considered in given scope as an 

activity (action). In TLA context the activities are the atomic building blocks of 

specification. To specify certain activity the precondition of its implementation should 

be given and specified first. 

Let's represent the activity as an implication, coupled with X  (neXt) temporal 

operator:    10  ii vXv  (Shkarupylo, Polska & Kudermetov, 2015). This means 

that truth of certain   APvi  0  atomic preposition implies the forthcoming truth of 

the appropriate   APvi 1  atomic preposition. That should be interpreted as follows: 

if certain component is intended to be invoked (in accordance with specification), it has 

to be invoked. This formalization is built on the following basis: 

        1,0  ii vvsLsL , where Ss  is some current state:  sL  is the 

representation of the precondition for i -th component invocation,   SsRs   is a 

subsequent state – the basis for the post-condition, represented with  sL   label as a 

result of i -th component invocation. 

Let's synthesize the TLA+ specifications with concurrent binary tree-like 

structures. The binary tree template will be slightly modified to more naturally represent 

the real-world scenarios: all the terminal vertices will be joined to a single one – the 



Vadym Viktorovych Shkarupylo /International Journal of Software Engineering and Computer Systems 4(1) 2018 48-60 

52 

 

final point, representing the final activity of gatherer-component invocation, modeling 

the intermediate computational results obtaining. 

At least 22V  state variables are required to synthesize such specification: 

 4321 ,,, vvvvV  , where Vv 1
 is the basis for the 1-st components invocation activity; 

this component should initiate the computational process by distributing the tasks to be 

processed concurrently by a pair of components, represented with Vvv 32 ,  state 

variables; Vv 4
 – the representation of a component, intended to be a gatherer 

(Figure 1). 

 

 
 

Figure 1. The activity diagram of concurrency 

 

In Figure 1 there are three layers of activities that should be distinguished. The 

1-st one, represented with single activity    10 11  vXv ; the 2-nd one – with a 

pair of activities to be implemented concurrently:    10 22  vXv  and 

   10 33  vXv ; the 3-rd one – with single activity    10 44  vXv . For this 

particular example let's assume the scenario of distributed   value calculation 

(Shkarupylo, 2016): 

 

     239/12057/13218/148 arctgarctgarctg  .  (3) 

 

In accordance with Eq.(3), 3/2  of all computations can be conducted by a 

component, represented with Vv 2  state variable, and the rest of computations ( 3/1 ) 

can be conducted by a component, represented with Vv 3  state variable (or vice 

versa). The Vv 1
 state variable represents some initiator of computational process. It 

can be a distinct web service (atomic or composite) that actually initiates the 

computational process – distributes the whole task for instance. It can also be the 

representation of WS-BPEL-engine itself – the entity, which initiates and coordinates 

the computational process in a centralized manner, to provide the consistent system 

functioning. Finally, the Vv 4
 variable is a representation of some gatherer-

component – the atomic or composite web service, which gathers the intermediate 



An approach to increase the effectiveness of tlc verification with respect to the concurrent structure of tla+ specification 

53 

 

computational results, obtained from the components, represented with Vvv 32 ,  state 

variables. 

Let's consider the 1-st and the 3-rd layers as the boundary ones (Figure 1). 

Paired with intermediate (2-nd) layer, each of them form fork- and join-constructs, 

respectively. The 1-st layer represents the initiation of some computational process and 

the 3-rd one – the finalization of it. So, in our case to form the minimum basis of 

concurrency inspired TLA+ specification at least 4 state variables are required. That 

provides us with minimum set of pair of boundary layers and at least one intermediate 

layer, representing the concurrency. Such concurrency is going to be modeled as 

interleaving. To form the additional intermediate layer another 4 state variables should 

be added, then 8, and so on. The main idea here is that the activities within certain 

intermediate layer should be implemented concurrently, and this particular layer-

oriented concurrency should be modeled as interleaving. Such approach stipulates the 

state explosion problem within the intermediate layers. To sum up, the main idea here is 

that each TLA+ specification with concurrent structure should possess strictly a pair of 

boundary layers and at least one intermediate layer. Then, during the experimentation, 

the number of intermediate layers should be increased step-by-step, until the limitation 

of random access memory is faced. 

In case of two or more intermediate layers, the boundaries between such 

adjacent layers then should be considered as barrier-functions (MPI_Barrier for 

instance, when some computational process is waiting for all another processes to 

continue/resume the computation). That means that no activity from adjacent 

subsequent intermediate layer can be executed until all the activities from some current 

intermediate layer are committed. In general this statement is also fair when some 

representative of a pair of adjacent layers is the boundary one. 

The representatives of intermediate layer(s) jointly cause the exponential state 

space growth. Herein the number of state variables, involved in concurrent activities, is 

 2n  – not taking into consideration the elements from boundary layers. 

Let's represent the layers with  nnk hhhhhHHH
22 log1log10 ,,...,,...,, 

   set, 

where   HhhH n 

2log0 ,  – boundary layers subset, where Hh0  – boundary fork-

layer, Hh n2log  – boundary join-layer;   HhhhH n  1log21 2
,...,,  – intermediate 

layers subset. 

To synthesize the specifications, the n  values are going to be taken from the 

sequence 732 2,...,2,2 . The 72  value has been chosen as an upper limit in accordance 

with the results, obtained earlier (Shkarupylo et. al., 2016). In accordance with these 

results, the limitation of random access memory volume has been faced while using the 

DFS-driven approach to automated TLC verification with respect to the sequential 

structures of TLA+ specifications. 

Let's estimate the total number of components to be invoked concurrently: 

 

  





1log

1

1

2

2
n

k

knf ,       (4) 

 

where  nf1
 – the function to obtain the total number of state variables from the 

intermediate layer(s); 
k2  – the number of state variables from Hhk

  intermediate layer. 



Vadym Viktorovych Shkarupylo /International Journal of Software Engineering and Computer Systems 4(1) 2018 48-60 

54 

 

In our case  
 

22
14log

1

1

2

 


k

knf . This means that both state variables ( Vv 2
 and 

Vv 3 ) are the representatives from a single intermediate layer Hh 1
 (Figure 1): 

   120

* , hhhHHH  . 

It should be emphasized that  732 2,...,2,2n  there is always a pair of state 

variables ( Vv1  and Vvn  ) from the boundary layers: Vv1  and Vvn   – from 

fork- and join-boundary layers, respectively. This means that the total number of state 

variables can be obtained with the following expression:   VHnf  

1 , where 

constH  2*  is the total number of state variables from both boundary layers. 

As a correctness check for 22n    21 nf  (Eq.(4)):   2221  nfVn . 

For 32n    6421 nf :   262)42(21  nfVn . And so 

forth. 

To estimate (count) the number of states to be reached during the successful 

TLC-verification, the following function has been proposed: 

 

     




1log

1

2

2

2

12
n

k

k

Snf ,     (5) 

 

where  122 
k

 is the number of states to be reached due to the concurrent 

invocation of the components, represented with state variables from Hhk
  

intermediate layer;  1  – to take into consideration the adjacency of some current and 

subsequent intermediate layers, when the resulting state for Hhk
  is the initial state 

for Hhk
1 ; const 3  – the number of states, associated with boundary layers – 

induced by invocation of state variables from the boundary layers: Ss 0 , Ss   and 

  SsRs   , where Ss   and Ss   are the pre-final and final states, 

respectively:   SsL   and   SsL   are the pre- and post-conditions for the final 

   10  nn vXv  activity occurrence (Figure 2). 

 

 
 

Figure 2. The state diagram for 4n  



An approach to increase the effectiveness of tlc verification with respect to the concurrent structure of tla+ specification 

55 

 

 

For instance, for 432 2,2,2n    276,21,62 nf , respectively (Eq.(5)). It will 

allow to check the results of automated TLC-verification of synthesized TLA+ 

specifications with binary tree-like structure (Figure 1). 

To estimate (count) the number of transitions, needed to visit all the states of S  

set (Eq.(1)), the following function has been proposed: 

 

     





1log

1

12

3

2

2
n

k

kk

Rnf ,     (6) 

 

where const 2  is the number of transitions (activities in particular), taking 

their ground solely on the boundary layers Hhh n2log0 , . For instance, considering the 

boundary fork-layer Hh0 , the   Rss 10 ,  transition takes place: 

        1,0 1110  vvsLsL  is the basis for the initial activity    10 11  vXv . 

For this activity the precondition    0...0 41  vv  is formed from the elements of 

 0sL  set as a conjunction; the post-condition        00.01 4321  vvvv  – 

from the elements of  1sL  (Figure 2). Considering the boundary join-layer Hh n2log , 

the   Rss 54 ,  transition takes place:         1,0 4454  vvsLsL  is the basis for 

the final activity    10 44  vXv , where        01.11 4321  vvvv  is a 

precondition and        11.11 4321  vvvv  – a post-condition – the 

representation of the final state Ss 5 , to be reached during the automated TLC 

verification. 

For instance, for 432 2,2,2n    1062,38,63 nf , respectively (Eq.(6)). 

The  nf3  function can be used to estimate the complexity of model checking 

task to be solved and to actually check the successfulness of the solution obtained. 

THE CASE STUDY 

To conduct the case study, the 2.05 version of TLC has been used. 

The platform used: Central Processing Unit – AMD K10, 3 GHz; Random 

Access Memory (RAM) – 2 GB, DDR3; Operating System – MS Windows 7; Java 

Runtime Environment version – 1.7. 

The numbers of states, found during the verification, are given in Table 1. 

 

Table 1. The BFS-to-DFS model checking tasks measures comparison 

 

 

States 
n  values 

22  32  
BFS DFS BFS DFS 

Gen 13 25 1009 3601 

Found 6 21 

Depth 5 9 

 



Vadym Viktorovych Shkarupylo /International Journal of Software Engineering and Computer Systems 4(1) 2018 48-60 

56 

 

In Table 1 Gen is the total number of states, generated by TLC to verify the 

TLA+ specification, synthesized in accordance with proposed analytical model. Found 

– the numbers of states, found and checked during the verification. These values have 

been obtained experimentally – from the TLC log-files. They can also be obtained 

analytically – with Eq.(5). 

Depth – the depth of state space search – the number of states (including Ss 0 ) 

to be visited, starting from the initial Ss 0  state and finishing in the final Ss   state. 

Taking into consideration the interleaving nature of our concurrency, the Depth is also 

the length of each path from the initial to the final state. Due to the initial state presence 

and interleaving, these paths are of the same length for a given n  (Figure 2): 

 

  14  nnf ,        (7) 

 

where  nf4
 is a function to get the length of each path from the initial state to 

the final one for a given Vn  . 

To calculate the total number of such paths, the following expression can be 

used: 

 

  





1log

1

5

2

)!2(
n

k

knf ,       (8) 

 

where  nf5  is a function to get the total number of paths to be walked through 

during the automated TLC-verification of certain TLA+ specification, synthesized with 

accordance to the proposed analytical model. Thus, using Eq.(7) and Eq.(8), the 

complexity assessment of model checking task to be solved can be represented as 

multiplication of  nf4
 and  nf5  functions: 

 

        





1log

1

546

2

)!2(1
n

k

knnfnfnf ,    (9) 

 

The calculated estimations for 432 2,2,2n , obtained with Eq.(8), are given in 

Table 2. 

 

Table 2. The estimations of model checking tasks complexities 

 

n   nf4
  nf5       nfnfnf 546   

22  5 2 10 
32  9 48 432 
42  17 1935360 32901120 

 

It can be concluded, according to the Table 2, that  nf6  value for 
42n  

induces some doubts about the random access memory sufficiency to successfully 

resolve the model checking task (Eq.(9)). 



An approach to increase the effectiveness of tlc verification with respect to the concurrent structure of tla+ specification 

57 

 

The  nf4
 and  nf5  values for 32 2,2n , given in Table 2, have been proved 

with TLC logging data. 

To discover the ways for TLC-verification effectiveness increasing, the time 

costs for BFS- and DFS-driven verifications have been measured (Table 3). In Table 3 

the averages of 210  measures are given. All the specifications, synthesized for 
32 2,2n , have been successfully checked. The numbers of states, visited during the 

model checking, and the appropriate depths of state space search have been equal to the 

estimations, given in Table 1. 

 

Table 3. The time costs for BFS- and DFS-driven model checking 

 

 

n  
TLA+ specifications 

sequential concurrent 

BFSt  DFSt  DFSBFS tt /  BFSt  DFSt  DFSBFS tt /  
22  0,934 0,420 2,230 0,926 0,425 2,179 
32  0,952 0,450 2,130 1,094 0,623 1,756 
42  1,029 0,540 1,910 - - - 

 

In Table 3 there are two sections – the "sequential" section and the "concurrent" 

one. 

In the first section the results of previous experimentations are given 

(Shkarupylo et. al., 2016). These results have been obtained for TLA+ specifications 

with purely sequential structure. The ratio between BFSt  and DFSt  values has been 

chosen as effectiveness criterion. It can be seen from the Table 3 that BFS-driven 

approach is about two times more time consuming, comparing to the DFS-driven one 

(considering the sequential specifications). Thus, in this scenario the DFS-driven 

approach is about two times more effective, comparing to the BFS-driven alternative. 

The first one, though, is paired with the significant limitations – the depth of state space 

search has to be assigned manually. This peculiarity significantly restricts the DFS-

driven approach practical usage in terms of automation. 

Considering the "concurrent" section of Table 3, we can observe a bit different 

picture. These results have been obtained during the current experimentation. It can be 

seen from this section that DFS-related time costs are growing significantly quicker, but 

the whole picture is pretty similar (considering the cases for 32 2,2n ). Thus, the 

general recommendations in terms of effectiveness are going to be similar to the ones 

with respect to the aforesaid "sequential" section: the DFS-driven approach is 

significantly more effective, comparing to BFS-driven one. Nevertheless, the advantage 

of the first over the later one is not as significant, when talking about the verification of 

TLA+ specifications with purely sequential structure ("sequential" section). Moreover, 

the aforesaid drawbacks are still here: the necessity to manually assign the depth of state 

space search and also the significantly bigger number of accompanying states, generated 

during the verification (Table 1). It can be assumed that the later peculiarity imposes 

some extra-requirements to the RAM volume. Nevertheless, both considered 

approaches (the BFS- and the DFS-driven one) appeared to be inapplicable to conduct 

the verification of TLA+ specification with a concurrent structure for 
42n , taking into 

consideration the estimations, given in Table 2, and also the limitation of RAM volume. 



Vadym Viktorovych Shkarupylo /International Journal of Software Engineering and Computer Systems 4(1) 2018 48-60 

58 

 

It should be noted, however, that the sizes of TLA+ specifications, synthesized 

with respect to the proposed analytical model, were the following: for 22n  – about 

1 KB; for 32n  – about 7 KB; for 42n  – about 210 MB. 

While changing the volume of JVM-accessible (Java Virtual Machine) memory 

buffer from 256 to 1280 MB, the corresponding BFS- and DFS-related time costs were 

almost identical (Figure 3). The model checking task hasn't been solved though. 

 

 
 

Figure 3. The verification time costs for 42n  

 

In Figure 3 the almost linear dependency of verification time costs from the 

available JVM-buffer size can be seen. The whole pictures for both considered 

approaches are nearly the same. Both of them appeared to be inapplicable to resolve the 

model checking task for 
42n , taking into consideration the limitation of memory 

space. 

CONCLUSION 

In this paper the novel approach to increasing the effectiveness of TLC verification with 

respect to the concurrent structure of TLA+ specification has been proposed. The 

following results have been obtained: 

1. The layered binary tree-like concurrent structure of TLA+ specification has 

been proposed. The concurrency has been represented as interleaving. This allowed to 

synthesize unified and structured specifications for the purpose of experimentation. 

2. The estimations of TLC model checking tasks have been proposed and proved 

by way of experimentation. It has been determined that DFS-driven approach to TLC 

verification of TLA+ specifications with concurrent structures generates significantly 

larger number of states, comparing to BFS-driven one. 

3. The case study has been conducted. It has been determined that the overall 

tendency of time costs growing for TLA+ specifications with concurrent structure is 

similar to the one, previously found out by us for specifications with purely sequential 

structure: the DFS-driven approach is about two times more effective (in terms of 

corresponding time costs), comparing to the BFS-driven one. 



An approach to increase the effectiveness of tlc verification with respect to the concurrent structure of tla+ specification 

59 

 

4. The limitation of random access memory has been faced. It has been 

determined that both approaches – the DFS- and the BFS-driven one – are inapplicable 

to solve the verification task with respect to TLA+ specifications with 42n  state 

variables, synthesized in accordance with proposed analytical model, taking into 

consideration the 1280 MB limitation of JVM buffer size. 

The further research is aimed at proposed analytical model sophistication, by 

increasing the set of state variables values to make synthesized formal specifications 

more relevant. 

ACKNOWLEDGEMENT 

With special thanks to Ravil Kudermetov (Head of Computer Systems and Networks 

Department) for the inspiration and all-around support. 

REFERENCES 

Clarke, E. M., Grumberg, O. & Peled, D. (2001). Model Checking. Massachusetts : MIT 

Press. 

Lamport, L. (2002). Specifying Systems: The TLA+ Language and Tools for Hardware 

and Software Engineers. Boston : Addison-Wesley. 

Larman, C. (2004). Applying UML and Patterns: An Introduction to Object-Oriented 

Analysis and Design and Iterative Development. New Jersey : Prentice Hall. 

Martini, B. & Paganelli, F. (2016). A Service-Oriented Approach for Dynamic Chaining 

of Virtual Network Functions over Multi-Provider Software-Defined Networks. 

Future Internet, 8(2), 21 p. doi: 10.3390/fi8020024 

Mecheraoui, K., Belala, N. & Saïdouni, D. E. (2016) Towards a Comprehensive 

Formal Model for Business Processes. 22nd International Conference on 

Information and Software Technologies, 174-186. doi: 10.1007/978-3-319-

46254-7_14 

Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M. & Deardeuff, M. 

(2015). How Amazon Web Services Uses Formal Methods. Communications of 

the ACM, 58(4), 66-73. doi: 10.1145/2699417 

Shkarupylo, V. V., Tomičić, I. & Kasian, K. M. (2016). The investigation of TLC 

model checker properties. Journal of Information and Organizational Sciences, 

40(1), 145-152. 

Shkarupylo, V. (2016). A Technique of DEVS-Driven Validation. XIIIth International 

Conference on Modern Problems of Radio Engineering, Telecommunications, 

and Computer Science, 495-497. doi: 10.1109/TCSET.2016.7452097 

Shkarupylo V. (2016). A Simulation-driven Approach for Composite Web Services 

Validation. 27th International Central European Conference on Information and 

Intelligent Systems, 227-231. 

Shkarupylo, V. V., Polska O. V. & Kudermetov R. K. (2015). DEVS-oriented technique 

for composite web services validity checking. Radio Electronics, Computer 

Science, Control, 4, 79-86. doi: 10.15588/1607-3274-2015-4-12 

Tran, H. T. & Feuerlicht, G. (2016). Service Development Life Cycle for Hybrid Cloud 

Environments. Journal of Software, 11(7), 704-711. doi: 10.17706/jsw.11.7.704-

711 

 

 

http://dx.doi.org/10.1109/TCSET.2016.7452097


Vadym Viktorovych Shkarupylo /International Journal of Software Engineering and Computer Systems 4(1) 2018 48-60 

60 

 

APPENDIX A: THE EXAMPLE OF TLA+ SPECIFICATION 

VARIABLES v1, v2, v3, v4 

Invariant ==   /\ v1 \in BOOLEAN   

/\ v2 \in BOOLEAN   

/\ v3 \in BOOLEAN   

/\ v4 \in BOOLEAN  

Init == v1=FALSE /\ v2=FALSE /\ v3=FALSE /\ v4=FALSE 

S_1 ==  /\ v1=TRUE /\ v2=FALSE /\ v3=FALSE /\ v4=FALSE 

S_2 ==  /\ v1=TRUE /\ v2=TRUE /\ v3=FALSE /\ v4=FALSE 

S_3 ==  /\ v1=TRUE /\ v2=FALSE /\ v3=TRUE /\ v4=FALSE 

S_4 ==  /\ v1=TRUE /\ v2=TRUE /\ v3=TRUE /\ v4=FALSE 

R_0 == v1' = IF Init THEN ~v1 ELSE v1 

R_1 == v2' = IF S_1 THEN ~v2 ELSE v2 

R_2 == v3' = IF S_1 THEN ~v3 ELSE v3 

R_3 == v3' = IF S_2 THEN ~v3 ELSE v3 

R_4 == v2' = IF S_3 THEN ~v2 ELSE v2 

R_5 == v4' = IF S_4 THEN ~v4 ELSE v4 

Next == /\ R_0 

 /\   \/ (/\ R_1/\ R_3) 

  \/ (/\ R_2/\ R_4) 

  /\ R_5 

Spec == Init/\[][Next]_<<v1,v2,v3,v4>> 


