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THREE-PHASE CIRCUITS 

5.1 Three-phase System of Electromotive Forces 

Suppose we have a system of three ac electromotive forces (e.m.f.s) 

of a certain frequency such that their amplitudes are equal but these e.m.f.s 

are displaced from one another by 120o in time. Such a set of three 

sinusoidal e.m.f.s make up a so-called symmetrical three-phase system of 

electromotive forces. The instantaneous values of such e.m.f.s are shown in 

Fig. 5.1 a , and their vector diagram is in Fig. 5.1b . 

 
Fig. 5.1 Three-phase system of e.m.f.s. 

The electromotive forces for a three-phase system are supplied by a 

three-phase generator (alternator). Such a generator has three identical 

(phase) coils rigidly attached to one another and rotating in a uniform 

magnetic field at a constant angular speed . The coils are displaced at 

120o from one another, and the sine wave e.m.f.s induced in them, are also 

displaced at 120o in time phase. 

The beginnings of coils (windings) can be marked out with the first 

letters of Latin alphabet A, B and C, and the ends - with last letters X, Y, Z. 

In particular, we call this system a three-phase balanced system - in 

contrast to an unbalanced system, in which the magnitudes may be unequal 

and/or the phase displacements may not by 120o. 

For a balanced three-phase system, it follows from Eq. (5.1), that the 

phasor sum of these three electromotive forces is zero. 

We may mathematically express this system of e.m.f.s as 
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 tUtEe mmA == sinsin   

 )120(sin)120(sin o
m

o
mB tUtEe −=−=  (5.1) 

 )120(sin)120(sin o
m

o
mC tUtEe +=+=   

For the identification, the three electromotive forces generated by the 

alternator are marked as follows. One of them is marked as AE . Then the 

one leading it is CE  and the one lags behind it, BE . 

The order in time in which they go through a zero value and begin to 

increase in an arbitrary positive sense is termed the phase sequence. The order 

ABC is taken as normal or positive phase sequence. If the voltages have been 

caused to reverse their sequence, making it ACB, this will be a negative phase 

sequence. If the voltages are in time phase, their vectors coincide, and the 

system is described as one of zero phase sequence. 

5.2 A Three-phase Circuit. Phase and Line Quantities 

A three-phase circuit is a combination of three-phase supply, a three-
phase load (or loads), and connecting wires. The term "phase" may be 
applied to that part of three-phase system which carries the same current. 
Thus, each phase winding of a generator can be connected to the load by 
two wires. The most common types of interconnections are wye connection 
and delta connection, applicable to both the supply and the load of a 
system. The number of connecting wires in a system is three or four. 

First, we consider "wye-wye" connection with a neutral wire (also 
referred to as a three-phase four-wire system) (see Fig 5.2). 

Three-phase circuits may be symmetrical and asymmetrical. The 
circuit, in which a symmetrical three-phase system of e.m.f.s and 
symmetrical loading operate, is called symmetrical or uniform. 

For wye connection the ends of three phases are connected together 
to form a node called a neutral point N or O (for the phases of generator) 
and n or O' (for the phases of the load), leaving the beginnings as terminals 
of three-phase star system. The wire connecting the neutral points of the 
alternator and the load is called the neutral wire. The neutral wire carries a 

neutral current, NI  or oI , the positive direction for which is from n to N. 

The wires connecting the terminals A, B and C of the generator and 
the terminals a, b and c of the load are termed the line wires, or simply the 

lines. The currents in the line wires are line currents, AI , BI  and CI . 
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A positive direction for line currents is assumed to be from the 
supply to the load. When only the magnitudes of the line currents are 

involved, it is customary to use the symbol lI , especially when all the line 

currents are equal in magnitude. 

 
Fig. 5.2. Wye-wye connection with a neutral wire. 

Fig. 5.2 shows a wye-to-wye (star-to-star) system with a neutral wire 
(also referred to as a three-phase four-wire system). If there is no a neutral 
wire between neutral points it will be three-phase three-wire system. 

The voltage between two wires is termed the line voltage. It symbol 

has a two-letter subscript, for example, ABU , which is the line voltage 

between the terminals A and B. The symbol for line voltage is lU . 

The voltage between the beginning and the end of a phase, or the 

voltage from line to earth is called a phase voltage, pU . The currents in the 

line wires are referred to as line currents. They are marked with one letter as 

BA II ,  and CI . When we need the magnitudes of line currents we use 

symbol lI , especially when all the line currents are equal. The currents in the 

phases of either the supply or the load are called the phase currents, pI . 

Look at Fig. 5.3. CABCAB UUU ,,  are the line voltages across the 

generator terminals; cabcab UUU ,,  are the line voltages across the load 

terminals; CBA UUU ,,  are the phase generator voltages; cba UUU ,,  

are the phase voltages across the load terminals. 
If there are no impedances in connecting wires the line voltages 

across the generator terminals are equal to the line voltages across the 

load terminals, that is caCAbcBCabAB UUUUUU === ,, . 
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Fig. 5.3. A wye-connected load. 

For the same reason, generator phase voltages and phase voltages 
across the load terminals are numerically equal to e.m.f.s: 

CCBbBAA EcUUEUUEaUU ====== ;; . 

CBA III ,,  are the line currents in line wires; cba III ,,  are 

the phase currents through the load phases. As they are joined in series: 

cCbBaA IIIIII === ,, . NI  is the current in a neutral wire, and 

NU  is the neutral voltage shift (or displacement voltage or the bias neutral 

voltage). It is the voltage between two neutral junctions. 

5.3 Relationship between Line and Phase Voltages and Currents 

Between phase and line e.m.f.s, voltages and currents exist certain 
relationships for symmetrical circuits. For a wye connection the line 
voltages are related to the phase voltages such that 

 BAAB UUU −=   

 CBBC UUU −=  (5.2) 

 ACCA UUU −=   

where ABU , BCU  and CAU  are the line voltages in a generator; AU , BU  

and CU  are the phase voltages in a generator. 

When we have a symmetrical load that is CBA ZZZ == , the line 

voltages are 3  times more than the phase voltages. 
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These relationships of the phase voltages and line voltages are 
illustrated in the phasor diagram of Fig. 5.4. 

 
Fig. 5.4. The phasor diagram of line and phase voltages. 

From the vector diagram, the line voltage may be visualized as the 
base of an equivalent triangle having acute angles of 30o (Fig.5.3) 

 p
o

pABl UUUU === 330cos2  (5.3) 

The line currents in a wye supply are equal to the phase currents as 

line and phase wires are connected in series: phl II = . 

5.4 The Calculation of Wye-to-Wye with a Neutral Wire 

For calculation such a circuit, we can use the symbolic method of 
calculation and some known laws: Ohm's law, Kirchhoff's laws, mesh-
current method, node-analysis method, superposition theorem and so on. 

If there is no impedance in a neutral wire in the circuit of Fig. 5.2, 
the potential at point n is the same as at point N, and two points are a single 
point. Then three separate meshes have the following currents: 

 
C

C
C

B

B
B

A

A
A

Z

E
I

Z

E
I

Z

E
I === ;; . (5.4) 

By Kirchhoff's current law the current in the neutral wire is the 
vector sum of the phase currents: 

 CBAN IIII ++=  (5.5) 

If load is balanced ( CBA ZZZ == ), the current NI  is zero. If load 

is unbalanced, the current NI  is other than zero. If the neutral wire has an 

impedance oZ , the system should be calculated by the nodal-pairs method. 
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Example 5.1. The phase voltage of the alternator in Fig. 5.2 is 120 V. 
The phase impedances: ;30== RZ A  == 80LjZ B ; 

=−= 80CjZ C . Find a current in a neutral wire. 

Solution: Write phase voltages in a complex form: 

 VeUU
oj

pA 1200 == ;  

 VeeUU
oo jj

pB
120120 120 −− == ;  

 VeeUU
oo jj

pC
120120 120== .  

Calculate phase currents for each phase separately: 

A
Z

E
I

A

A
A 4

30

120
=== ;        Ae

e

e

Z

E
I

o

o

o

j

j

j

B

B
B

210

90

120

5.1

80

120 −
−

=== ;  

 Ae

e

e

Z

E
I

o
o

j

j

j

C

C
C

210

90

120

5.1

80

120

0
===

−
.  

 
Fig. 5.5 

The vector diagram is shown in Fig. 5.5. 

Current AI  is in phase with AE , BI  lags behind BE , CI  leads 

CE . The algebraic sum CBA III ++  gives the current in a neutral wire: 

 

.04.1235.048.1235.048.14

5.15.14 210210

Ajj

eeIIII
oo jj

CBAN

=−−+−=

=++=++= −
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5.5 The Calculation of Wye-to-Wye without a Neutral Wire 

When the load is balanced (or uniform) and there is no a neutral wire 

between nodes N and n, the voltage 0=NU . 

If the load is unbalanced the voltage appearing between the neutral 

points of the load and the supply can be found by the formula 

 
CBA

CCBBAA
N

YYY

YEYEYE
U

++

++
=  (5.6) 

where AE , BE  and CE  are respective voltages at the generator end; 

BA YY ,  and CY  are the admittance of three phases. This voltage is called 

the neutral voltage shifting or the bias neutral voltage. 

Now we can find the phase currents through the load 

 aNA
a

NA

a

a
a YUE

Z

UE

Z

U
I −=

−
== )( ; (5.7) 

 bNB
a

NB

b

b
b YUE

Z

UE

Z

U
I −=

−
== )( ; (5.8) 

 cNC
c

NC

c

c
c YUE

Z

UE

Z

U
I −=

−
== )( . (5.9) 

where cba UUU ,,  are phase voltages at the load, cba YYY ,,  are phase 

admittances, that is the values inverse to complex impedances. 

For the numerical data see Example 5.2. (Fig.5.6.) 

 
Fig.5.6 
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Example 5.2. Determine currents and voltages and draw a vector 

diagram in the circuit without a neutral wire, for 

=== 10,20,50 bap ZZVE , −= 20jZ c . 

Write phase voltages in a complex form: 

 VeEU
oj

pA 500 == , VeeEU
oo jj

pB
120120 50 −− ==   

 VeeEU
oo jj

pC
120120 50== .  

Calculate complex phase admittances: 

 105.0
20

11 −===
a

a Z
Y ;   11.0

10
11 −===

b
b Z

Y ;  

 
190

90
05.005.0

20

11 −

−
==== je

e
Z

Y
o

o
j

jc
c .  

For the asymmetrical load the neutral voltage shifting appears 

between neutral nodes. We define it, using Eq. (5.4). 

 =
++

++
=

−

05.01.005.0

05.0501.05005.050 90120120

j

eee
U

oo jjoj

N  

 Vej
j

j oj13262.3166.23981.20
05.015.0

58.5165.2 −=−−=
+

−−
= . 

 
Fig. 5.7 
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Find the currents. using Eq. (5.7), (5.8), (5.9): 

;74.3183.155.305.0)45.2985,2350(
18

AejjI
oj

a =+=++=

;002.11.0)45.2985,233.4325(
102

AejjI
oj

b
−

=++−−=  

.354.305.0)45.2985.233,4325(
177

AejjjI
oj

c
−

=+++−=  

The vector diagram for this problem one can see in Fig. 5.7. 

5.6 The Calculation of Damage Conditions 

There are two damage rates in three-phase circuit: a short circuit of 
any phase and an open circuit of a phase. 

Example 5.3. Symmetrical load )100240( jZZZ cba +===  is 

connected with line wires with line impedances += )4030( jZ l  to the 

generator with the phase e.m.f. VEp 220= . The impedance of a neutral 

wire 2040 jZ N += . Calculate damage conditions for two cases: 

- a short circuit of the phase A; 
- an open circuit of a line wire between nodes A  and a . 
When a short circuit in phase A, (Fig.5.8), it is asymmetrical load, 

an = , i.e. "n" and "a" are the same node. 

 
Fig.5.8. A short circuit of a load in the phase A 

Define the neutral voltage shift appeared between neutral nodes: 

 
NCBA

CCBBAA
N

YYYY

YEYEYE
U

+++

++
=  (5.10) 
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At first, we calculate complex branch admittances: 

153

53
)016.0012.0(02.0

50

11 −− −==== je

e
Z

Y
o

o

j

jl
A ;  

;)0015.0003.0(0033.0

14.304

11 127

27

−− −===
+

= je

e
ZZ

Y j

jlb
B o

127 )0015.0003.0(0033.0 −− −=== j
BC eYY ; 

127

27
)01.002.0(022.0

72.44

11 −− −==== je

e
Z

Y
o

o

j

jN
N . 

Determine the bias neutral voltage: 

=
−+−+−+−

++
=

−−−−

01.002.00015.0003.000115.0003.0016.0012.0

022.01270033.012702.0127
2712027120153

jjjj

eeeee
U

oooo jjjojj

N

Vej

e

e o

o

o

j

j

j
20

37

57

87.78525.27915.73

048.0

761.3 −

−

−

=−== . 

Calculate the phase currents by Ohm's law: 

=−==−=
−−

)87.78127(02.0)(
2053 oo jj

aanaNAA eeYUYUEI

ojej 42973.2007.2193.2 −=−= A; 

=−==−=
−−−

)59127(0033.0)(
512027 ooo jjj

bbnbNBB eeeYUYUEI

;808.0197.0784.0 166 Aej
oj−=−−=

=−==−=
−

)59127(0033.0)(
512027 ooo jjj

ccncNCC eeeYUYUEI

.938.0915.0207.0 103 Aej
oj=+−=  

The current in a neutral wire 

 Ae

e

e

Z

U
I

o

o

o

j

j

j

N

N
N

47

27

20

764.1

7.44

87.78 −
−

=== .  
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Fig.5.9. A vector diagram for a short circuit in the phase A. 

Check up the calculation, using Kirchhoff's current law: 

 

.764.12.1203.1

915.0207.0197.0784.0007.2193.2

47 Aej

jjjI

oj

N

−=−=

=+−−−−=

  

Determine the phase voltage drops across the load and the voltage 
drops in line wires: 0=anU  

 VeeeIZU
ooo jjj

bbbn
14316623

1.210808.0260
−−

===  

 VeeeIZU
ooo jjj

cccn
12510323

858.243938.0260 === . 

 VeeeIZU
ooo jjj

alAa
114253

655.148973.250 ===
−  

 VeeeIZU
ooo jjj

blBb
11316653

40.40808.050
−−

===  

 VeeeIZU
ooo jjj

clCc
15610353

9.46938.050 ===  

A vector diagram for this condition is shown in Fig. 5.9. 
When we have an open circuit of the phase A, (Fig.5.10) the working 

condition also becomes asymmetrical. Hence a neutral voltage shift appears 
between the neutral junctions of a generator and a load. 

As 0=AU , Eq.(5.5) is used in the following condition: 

 
NCB

CCBB
N

YYY

YEYE
U

++

+
=  (5.11) 
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Fig.5.10. An open circuit in the line wire Aa. 

 =
−+−+−

+
=

−−−

01.002.00015.0003.00015.0003.0

0033.01270033.0220 2712027120

jjj

eeee
U

ooo jjjoj

N  

Vej
oj179998.24284.0997.24 −=−−= . 

Calculate the phase currents and the current in the neutral wire: 

 −==−=
−− Oo jj

bbnbNBB eeYUYUEI
12027

127(0033.0)(  

 Aeje
ooj j14169.043.0537.0)998.24 179 −=−−=− ; 

 −==−=
− Oo jj

ccncNCC eeYUYUEI
12027

127(0033.0)(  

 Aeje
ooj j8769.0684.004.0)998.24 179 =+=−  

AeeeYUI
oj

Oo jj
NNN

206559.0998.240022.0
17927 −===

−−
. 

Find the phase voltages and the voltage drops in line wires: 

 VeeeIZU
ooo jjj

blBb
8814153

5.3469.050
−−

===   

 VeeeIZU
ooo jjj

clCc
1408753

5.3469.050 ===   

 VeeeIZU
ooo jjj

bbbn
11823141

4.17926069.0
−−

===  

 VeeeIZU
ooo jjj

cccn
1102387

4.17926069.0 ===   
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The vector diagram for this case is represented in Fig. 5.11. 

 
Fig. 5.11. A phasor diagram for the open circuit in the line wire Aa 

5.7. Delta-Connected Load 

For delta connection (Fig. 5.12), the end of the 1st load phase is 

connected to the beginning of the 2nd one, the end of the latter is connected 

to the beginning of the 3rd phase, and its end - to the beginning of the 1st, 

thus making symmetrical cyclic junctions. The vector sum of the e.m.f.s in 

a closed triangle is zero.  In delta-connected load, phase currents 

cabcab III ,,  flowing through phase impedances cabcab ZZZ ,,  are 

supplied with two-letter subscripts. The positive direction of a current flow 

is assumed to be clockwise. The sequence of letters corresponds to the 

direction of current flow, the first letter standing for the sending end, and 

the second letter for the receiving end of a given current. 

Let's mark the voltages and currents in the delta-connection: 

CABCAB UUU ,,  are the line voltages in a three-phase delta-

connected supply; cabcab UUU ,,  are phase voltages in the load; 

CBA III ,,  are the line currents in line wires connecting the supply 

and the load; cabcab III ,,  are phase currents in a delta-connected load. 

If ZL = 0 in line wires, the line voltages in a delta-connected supply 

are equal to the phase voltages in a delta-connected load: pl UU = . 

If the load is balanced, the line currents, however, 3  times more 

than the phase currents, as above for the voltages in a wye supply. 
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Fig.5.12. The delta connection. 

If the load is unbalances, the line currents can be found in terms of 
the phase currents by Kirchhoff's current law: 

 caabA III −= ,  

 abbcB III −= , (5.12) 

 bccaC III −= .  

When there are line impedances in line wires, the line voltages across 
the load aren't equal to the generator line voltages. 

That is why we must at first change delta-connected load into wye-
connected one (see Fig. 5.12). 

One can use the following formulas for transformation: 

 

.'

;'

;'

cabcab

bcca
c

cabcab

abbc
b

cabcab

caab
a

ZZZ

ZZ
Z

ZZZ

ZZ
Z

ZZZ

ZZ
Z

++


=

++


=

++


=

 (5.13) 

If there is a symmetrical load and the phase impedances are equal 
( cabaab ZZZ == ), the neutral voltage shift (or the bias neutral voltage) 

NU  is equal to 0. Then we can calculate currents: 

 
cl

C
C

bl

B
B

al

A
A

ZZ

E
I

ZZ

E
I

ZZ

E
I

'
;

'
;

' +
=

+
=

+
= . (5.14) 
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The phase currents are 3  times less the line currents and angle shift 

between them is 30O (phase current leads the corresponding line current). 

 
ooo jC

ca
jB

bc
jA

ab e
I

Ie
I

Ie
I

I 303030

3
;

3
;

3
===  (5.15) 

The vector diagram of currents and voltages (Fig. 5.13). 

 
Fig. 5.13. A vector diagram for a symmetrical delta connection. 

The description of the vector diagram: 

CBA EEE ,,  are the phase e.m.f.s of a generator; 

CBA UUU ',','  are the phase voltages across a wye-connected load. 

They can be found by Ohm's law: 

 cccbbbAaa IZUIZUIZU === '';'';'' . (5.16) 

cCBbAa UUU ,, are the voltages across line impedances. We can 

determine them by the formulas: 

 ClCcBlBbAlAa IZUIZUIZU === ;; . (5.17) 

Calculate the phase voltages across a delta-connected load. They can 

be found as  baabbaab UUUUUU '';'' −=−= .      (5.18) 

Example 5.4. Symmetrical load −=== )450500( jZZZ cabcab  

is connected through line wires with line impedances += )4535( jZ l  to 

the symmetrical generator with the phase voltage equaled to VU p 380= . 

Calculate phase and line currents and voltages. Draw a vector diagram. 
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Solution: At first, we change a delta-connected load into a wye-

connected one (see Fig. 5.12). As we have a balanced load, one can use the 

following equation: 

 =−==== − ojab
cba ej

Z
ZZZ 4223.22415044,166

3
''' .  

Determine phase voltage across the generator and write them in a 

complex form: 

 VeUVeUVU
oo

j
C

j
BA

120120
380;380;380 ===

−
.  

Define phase impedances: 

=−++=+=== − oj
alcba ejjZZZZZ 2836.22715044.1664535 . 

Calculate line currents by Ohm's law: 

 Ae

e
Z

U
I

o

o

j

ja

A
A

28

28
67.1

36.227

380
===

−
.  

Then 

 Ae
Z

U
IAe

Z

U
I

oo j

c

C
C

j

b

B
B

14892 67.1;67.1 ==== − .  

Determine phase currents across the load by Eq. (5.15): 

 
oo

o
o jj

j
jA

ab ee
e

e
I

I 5830
28

30 965.0
3

67.1

3
=== A;  

 
oo j

ca
j

bc eIAeI 17862 965.0;965.0 == − A.  

Define line and phase voltages: 

VeeeIZU
ooo jjj

ababab
585742 14.649965.068.672 === − ;  

VeIZU
oj

bcbcbc
10414.649 −== ; 

oj
cacaca eIZU 13614.649== V; 

ooo jjj
AlAa eeeIZU 802752 27.9267.157 === V; 

oj
BlBb eIZU 4027.92 −== V; VeIZU

oj
ClCc

20027.92== . 
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At last, we draw a vector diagram for this case (see Fig. 5.14). 

 
Fig. 5.14 

5.8 Damage Conditions in a Delta-Connected Load 

There are three damage rates in a delta-connected load: 

an open circuit of any phase; 

a short circuit of a phase; 

an open circuit of a line wire. 

The first damage condition we will consider for the case when the 

phase bc is broken. Then a delta-connected load changes into asymmetrical 

wye connection because we have got here an unbalanced load. Such a 

delta-connected circuit is depicted in Fig. 5.15. 
So, it is the asymmetrical wye connection without a neutral wire. 

Hence, a neutral voltage shift appears between the two neutral nodes. We 
can find it by Eq. (5.6): 

 
CBA

CCBBAA
N

YYY

YEYEYE
U

++

++
=   

where CBA YYY ,,  are complex phase admittances. 

The phase currents may be determined by Eq. (5.9) as 

CNCCBNBBANAA YUEIYUEIYUEI −=−=−= )(,)(,)( T

he voltages CcBbAa UUU ,,  in line wires and the phase voltages 

caab UU ,  are determined in a common way. 



20 

 
Fig. 5.15. An open circuit in the phase bc. 

 
Fig. 5.16. A vector diagram for open circuit rate. 

This diagram is drawn for the unbalanced case when caab ZZ  . 

When we have a short circuit in the phase bc, a delta-connected 

circuit will change into asymmetrical wye connection without a neutral 

wire. Such a connection is depicted in Fig. 5.17. Hence, it appears the 

neutral voltage shift between the two neutral nodes N and a: 

 
CBA

CCBBAA
N

YYY

YEYEYE
U

++

++
= ,  

where 
abcl

caab

caab
l

A
ZZ

ZZ

ZZ
Z

Y
+

=

+


+

=
11

; and 
l

CB Z
YY 1==  are 

phase complex admittances. 

Knowing the neutral voltage shift, one can determine current. 
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Fig. 5.17. The circuit with a short circuit in the phase bc. 

Phase currents of the wye connection are found by Ohm's law: 

 ANA

caab

caab
l

NA
A YUE

ZZ

ZZ
Z

UE
I −=

+


+

−
= )(   

The currents in two parallel branches are determined by using so-
called "resolving of the total current" (See Ch. 3, eq. 3.32): 

 
abca

ab
Aca

abca

ca
Aab

ZZ

Z
II

ZZ

Z
II

+
=

+
= ;   

When there is an open circuit in a line wire, a three-phase delta 
connection has become an usual one-phase circuit. 

Let's consider the case when the line wire Aa is broken in the circuit 
with a balanced load. The circuit for this case is shown in Fig. 5.18, a. So, 
now we have the one-phase circuit with the input voltage UBC. For this case 
the currents across line impedances can be determined by the formula 

 
eq

BC
CB

Z

U
II =−= , where 

acabbc

acabbc
leq

ZZZ

ZZZ
ZZ

++

+
+=

)(
2 .  

Then we can calculate the currents through phase impedances: 

 
caab

cb
caab

bc

bc
bc

ZZ

U
II

Z

U
I

+
=== ;   

where 

acabbc

acabbc
Bcbbc ZZZ

ZZZ
IUU

++

+
=−=

)(
. 



22 

Now we can find voltages across series impedances caab ZZ , : 

 
2

bc
abca

U
UU == .  

Fig. 5.18. An open circuit in the line wire Aa. 

The vector diagram for this case is shown in Fig. 5.18, b. 

5.9 Active, Reactive and Apparent Power in 3-phase System 

The instantaneous power for a single-phase sinusoidal source varies 

itself sinusoidally at twice the frequency of the source. The expression for 

the single-phase sinusoidal source can be applied to each phase of the 

three-phase system. 

The active power of a three-phase system is the sum of the active 

powers in each phase plus the active power dissipated across the resistance 

of a neutral wire (if it is not equal zero): 

 0PPPPP CBA +++=  (5.19) 

where PO is the active power in the resistance of a neutral wire. 

The reactive power is the sum of the reactive powers in each phase 

plus the reactive power in the reactance of a neutral wire: 

 0QQQQQ CBA +++=  (5.20) 

where QO is the reactive power in the reactance of a neutral wire. 

The apparent (or total) power 

 
22 QPS +=  (5.21) 

With a balanced load 
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LLpp

pLLppp

pLLppp

IUIUS

IUIUQ

IUIUP

33

,sin3sin3

,cos3cos3

==

==

==

 (5.22) 

where p  is the angle between phase voltage pU  and phase current pI ; 

LU  and LI  are line voltage and line current, respectively.  

The equation for the power in a three-phase system is the same either 

for a wye or a delta connection when the power is expressed in terms of 

line quantities. 

 
Fig. 5.19. 

Before leaving this discussion on three-phase power, let us emphasize 

the fact that the total instantaneous power for the three-phase system is a 

constant as illustrated by Fig. 5.19. This stands in sharp contrast to the single-

phase case where the single-phase power pulsates at twice the line frequency. 

Herein, then, lies another significant advantage of the three-phase system.  

5.10 The Advantages of Three-phase System 

The popularity of three-phase systems can be explained by the three 
principal advantages they offer, namely: 

(a) over long distances it is more economical to transmit alternating 
current power three-phase then with any other number of phases; 

(b) the components of three-phase systems, such as three-phase 
induction motors and three-phase transformers, are simple to manufacture 
and economical and reliable in service; 

(c) given certain conditions, including a balanced load on the phases, 
the instantaneous power of system remains unchanged over a period of the 
sinusoid. 


