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THREE-PHASE CIRCUITS
5.1 Three-phase System of Electromotive Forces

Suppose we have a system of three ac electromotive forces (e.m.f.s)
of a certain frequency such that their amplitudes are equal but these e.m.f.s
are displaced from one another by 120° in time. Such a set of three
sinusoidal e.m.f.s make up a so-called symmetrical three-phase system of
electromotive forces. The instantaneous values of such e.m.f.s are shown in
Fig. 5.1a, and their vector diagram is in Fig. 5.1b .

€4 eg e +1

a) &)

Fig. 5.1 Three-phase system of e.m.f.s.

The electromotive forces for a three-phase system are supplied by a
three-phase generator (alternator). Such a generator has three identical
(phase) coils rigidly attached to one another and rotating in a uniform
magnetic field at a constant angular speed@ . The coils are displaced at
120° from one another, and the sine wave e.m.f.s induced in them, are also
displaced at 120° in time phase.

The beginnings of coils (windings) can be marked out with the first
letters of Latin alphabet A, B and C, and the ends - with last letters X, Y, Z.
In particular, we call this system a three-phase balanced system - in
contrast to an unbalanced system, in which the magnitudes may be unequal
and/or the phase displacements may not by 120°.

For a balanced three-phase system, it follows from Eg. (5.1), that the
phasor sum of these three electromotive forces is zero.

We may mathematically express this system of e.m.f.s as
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ep =Emsinot=Uq sin ot
eg = Epy sin (0t—120%) =U ;, sin (ot —120°) (5.1)

ec = Ep sin (ot +120°%) =U ; sin (ot +120°)

For the identification, the three electromotive forces generated by the
alternator are marked as follows. One of them is marked as E . Then the

one leading itis E- and the one lags behind it, E.

The order in time in which they go through a zero value and begin to
increase in an arbitrary positive sense is termed the phase sequence. The order
ABC is taken as normal or positive phase sequence. If the voltages have been
caused to reverse their sequence, making it ACB, this will be a negative phase
sequence. If the voltages are in time phase, their vectors coincide, and the
system is described as one of zero phase sequence.

5.2 A Three-phase Circuit. Phase and Line Quantities

A three-phase circuit is a combination of three-phase supply, a three-
phase load (or loads), and connecting wires. The term "phase™ may be
applied to that part of three-phase system which carries the same current.
Thus, each phase winding of a generator can be connected to the load by
two wires. The most common types of interconnections are wye connection
and delta connection, applicable to both the supply and the load of a
system. The number of connecting wires in a system is three or four.

First, we consider "wye-wye" connection with a neutral wire (also
referred to as a three-phase four-wire system) (see Fig 5.2).

Three-phase circuits may be symmetrical and asymmetrical. The
circuit, in which a symmetrical three-phase system of e.m.f.s and
symmetrical loading operate, is called symmetrical or uniform.

For wye connection the ends of three phases are connected together
to form a node called a neutral point N or O (for the phases of generator)
and n or O' (for the phases of the load), leaving the beginnings as terminals
of three-phase star system. The wire connecting the neutral points of the
alternator and the load is called the neutral wire. The neutral wire carries a
neutral current, I or I, the positive direction for which is from n to N.

The wires connecting the terminals A, B and C of the generator and
the terminals a, b and c of the load are termed the line wires, or simply the
lines. The currents in the line wires are line currents, I 5, Ig and 1.
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A positive direction for line currents is assumed to be from the
supply to the load. When only the magnitudes of the line currents are

involved, it is customary to use the symbol |, especially when all the line
currents are equal in magnitude.

4 ! A Line wire

%TEA
M

Newuiral wire

Erat o Ep

Ic

Fig. 5.2. Wye-wye connection with a neutral wire.

Fig. 5.2 shows a wye-to-wye (star-to-star) system with a neutral wire
(also referred to as a three-phase four-wire system). If there is no a neutral
wire between neutral points it will be three-phase three-wire system.

The voltage between two wires is termed the line voltage. It symbol
has a two-letter subscript, for example, U 55, which is the line voltage
between the terminals A and B. The symbol for line voltage is U .

The voltage between the beginning and the end of a phase, or the
voltage from line to earth is called a phase voltage, U ,. The currents in the

line wires are referred to as line currents. They are marked with one letter as
Ia1g and I-. When we need the magnitudes of line currents we use

symbol 1, especially when all the line currents are equal. The currents in the
phases of either the supply or the load are called the phase currents, |, .
Look at Fig. 5.3. U pg, U e, U, are the line voltages across the
generator terminals; U o, U,., U, are the line voltages across the load
terminals; U », U, U are the phase generator voltages; U ,, Uy, U

are the phase voltages across the load terminals.

If there are no impedances in connecting wires the line voltages
across the generator terminals are equal to the line voltages across the
load terminals, that is U ag =U 4, U gc =Upe, Uca =Ua



Upe — =

Ue In

Fig. 5.3. A wye-connected load.

For the same reason, generator phase voltages and phase voltages
across the load terminals are numerically equal to e.m.f.s:

Ua=Ua=Ea; Ug=Up=Eg; Uc=Uc=Ec.

LA, 1, I are the line currents in line wires; 1., 1,, I. are
the phase currents through the load phases. As they are joined in series:
Ia=1l,, Ig=1lp, Ic=1.. Iy is the current in a neutral wire, and
U \ is the neutral voltage shift (or displacement voltage or the bias neutral
voltage). It is the voltage between two neutral junctions.

5.3 Relationship between Line and Phase Voltages and Currents

Between phase and line e.m.f.s, voltages and currents exist certain
relationships for symmetrical circuits. For a wye connection the line
voltages are related to the phase voltages such that

Uag=YUa-Us
Ugc =Ug-Uc (5.2)
Uca=Uc-Ua

where U o5, U e and U ., are the line voltages in a generator; U ,, U g

and U are the phase voltages in a generator.
When we have a symmetrical load that is Z, =Zg =Z¢, the line

voltages are \/5 times more than the phase voltages.
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These relationships of the phase voltages and line voltages are
illustrated in the phasor diagram of Fig. 5.4.
-Upg

-Uy U

Fig. 5.4. The phasor diagram of line and phase voltages.

From the vector diagram, the line voltage may be visualized as the
base of an equivalent triangle having acute angles of 30° (Fig.5.3)

Uj =Upg =U,-2cos 30° =v3-U (5.3)
The line currents in a wye supply are equal to the phase currents as
line and phase wires are connected in series: 1} =1 4.

5.4 The Calculation of Wye-to-Wye with a Neutral Wire

For calculation such a circuit, we can use the symbolic method of
calculation and some known laws: Ohm's law, Kirchhoff's laws, mesh-
current method, node-analysis method, superposition theorem and so on.

If there is no impedance in a neutral wire in the circuit of Fig. 5.2,
the potential at point n is the same as at point N, and two points are a single
point. Then three separate meshes have the following currents:
Ena. Eg. Ec

lp==": lp==—": | .
ATz B zgt 7Yz,

By Kirchhoff's current law the current in the neutral wire is the
vector sum of the phase currents:

In=1a+1g+]c (5.5)
If load is balanced (Z  =Zg =Z ), the current 1 is zero. If load
is unbalanced, the current |, is other than zero. If the neutral wire has an
impedance Z,, the system should be calculated by the nodal-pairs method.

(5.4)
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Example 5.1. The phase voltage of the alternator in Fig. 5.2 is 120 V.
The phase impedances: Z=R=30Q; Zpg = joL=80Q;

Zc =- j/wC=80Q. Find a current in a neutral wire.
Solution: Write phase voltages in a complex form:

U,=U, e -120v;
~ A _p e ]
R 0 R 0
Ug=Up-e 110 —120e7 11207y ;

. 0 . (0]
Uc =U, el 1206120 v,

Calculate phase currents for each phase separately:

E, 120 Eg 1206 1120° —j210°
Z, 30 ZB  gei%°
E j120° 0
lC:_C:12Oe ~15¢)2107 A
. 4 __EA
+1
i
£p

Fig. 5.5

The vector diagram is shown in Fig. 5.5.
Current 1, is in phase with E,, 1g lags behind Eg, 1. leads

E . The algebraic sum 1 5 +1g + 1 gives the current in a neutral wire:
- O - O
In=la+lpg+lc=4+15e 12107 115012107 _
=4-1.48+ j0.235-1.48 - j0.235=1.04 A
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5.5 The Calculation of Wye-to-Wye without a Neutral Wire

When the load is balanced (or uniform) and there is no a neutral wire
between nodes N and n, the voltage U \ =0.

If the load is unbalanced the voltage appearing between the neutral
points of the load and the supply can be found by the formula

EAYA+ERYg+EcYc
Ya+tYg+Ye

Uy = (5.6)

where E,, Eg and E are respective voltages at the generator end;
Y oY and Y are the admittance of three phases. This voltage is called

the neutral voltage shifting or the bias neutral voltage.
Now we can find the phase currents through the load

U Er-U
~a_=A =N .
——a_=A =N _(E,-Uy)Ya.: 5.7
la ;a ;a (_A _N) la ( )
U Er —-U
“b =B =N .
lb:_z == =(Eg-Upn) Yy (5.8)
£b £a
U E~-U
lCZE_CZ_CZ—_Nz(EC ~Upy)-Ye. (5.9)
L¢ L¢

where U ,,U,U . are phase voltages at the load, Y ,,Y,, Y. are phase

admittances, that is the values inverse to complex impedances.
For the numerical data see Example 5.2. (Fig.5.6.)

Fig.5.6
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Example 5.2. Determine currents and voltages and draw a vector
diagram in the circuit without a neutral wire, for
Ep=50V, Z2,=20Q, Z,=10Q , Z,=-j20 Q.

Write phase voltages in a complex form:

.0 . O R 0
Up=E, el =50V,QB=Ep-e_leo _5pe-1120°y,

=ATEp
: 0] : 0
QC:Ep_eleO _50ei120%,

Calculate complex phase admittances:

Yo=Y =hp=00s07 vy=17 =l =0107

= = — 1900: —1
Y. }/;c /J/20ej9°° 0.05e j0.05 QL.

For the asymmetrical load the neutral voltage shifting appears
between neutral nodes. We define it, using Eq. (5.4).

U, = 50.0.05 + 500~ 1120° . 0.1 + 506 1120° . 0,056 190°
—N 0.05+ 0.1+ j0.05

 —2.165- j5.58

H 0
. ~-20.981 - j23.66 =31.62¢ 132" v
0.15+ j0.05
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Find the currents. using Eq. (5.7), (5.8), (5.9):

100

1, =(50+2385+ j29.45)-0.05=3.55+ j1.183 =3.74e 187 a
- . —j102° 4.
I =(-25- j43.3+ 23,85+ j29.45)-0.1=1.002e A;

- - - —jar7°
1. =(-25+ j43,3+23.85+ j29.45)- j0.05=3.354¢ A
The vector diagram for this problem one can see in Fig. 5.7.

5.6 The Calculation of Damage Conditions

There are two damage rates in three-phase circuit: a short circuit of
any phase and an open circuit of a phase.
Example 5.3. Symmetrical load Z,=Z,=2Z.=(240+ j100) is

connected with line wires with line impedances Z| = (30 + j40) Q to the
generator with the phase e.m.f. Ep=220V. The impedance of a neutral
wire Z =40+ j20. Calculate damage conditions for two cases:

- a short circuit of the phase A;

- an open circuit of a line wire between nodes A and a.

When a short circuit in phase A, (Fig.5.8), it is asymmetrical load,
®n =g, 1.6."n" and "a" are the same node.

L T
Fig.5.8. A short circuit of a load in the phase A
Define the neutral voltage shift appeared between neutral nodes:

U. _Ea¥a+EpYp+EcYc (5.10)
o Ya+tYp+Yc+Yy
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At first, we calculate complex branch admittances:

H 0
YA :iz%:O.OZe_JEB - (0.012 - jo.016) QL
I 5peiss
Yg = t ! — ~0.0033¢ 127 = (0.003 - j0.0015) L
Zb 21 30414127

Y =Yg =0.0033¢ 7127 =(0.003-0.0015) Q7;
H 0
= ;0 =0.022¢ 127" = (0.02 - jo.o1) L.
44.72¢ 127
Determine the bias neutral voltage:

1
ZN

. 0 . 0 . . 0 - =0
127-0.02¢ 1153 11276711207 .0.0033¢ 177 1+127e 120" .0.022¢ 7177
0.012 — j0.016 +0.003 — j0.00115 + 0.003 — j0.0015 +0.02 — j0.01

|

N

—j57° 0
_3761e 7 73915 jor525 —78.876" i0°V

in70
0.048e~ 13
Calculate the phase currents by Ohm's law:

- 0 - 0
La=(Ep-Up)-Yqa=U,,-Y,=0021%" (12778877107
H 0
=2.193 - j2.007 =2.973¢ 1% A;
- o - o - O
lg=(Ep-Upy) Yy =Up.Y, =00033e 127 (127¢ 120" _59e=157) -
B B N b bntb
PP
—-0.784— j0.197 =0.808¢ 1166~ A
- 0 - O - O
Ic =(Ec —Up)-Ye=Ugy-Y, =00033e 127" (127 1207 _59¢ 157 )

. 0
=-0.207 + j0.915=0.938¢ 133" A
The current in a neutral wire

Uy 78.87ei%0°

In=7 -
EN ga70)%

- 0
—1.764e 147" A,



Fig.5.9. A vector diagram for a short circuit in the phase A.
Check up the calculation, using Kirchhoff's current law:
Iy =2.193 - j2.007 - 0.784 — j0.197 - 0.207 + j0.915 =

170
~1.203 - jL.2=1.764e" J4" A
Determine the phase voltage drops across the load and the voltage
drops in line wires: U ,,=0

H 0 - 0 R o
L_an=Zb~lb=26Oe123 .0.808e 11667 _910.1e7 143"

1 0] - 0 R o
Uy =2Z¢ -1, =260e12 .0938e 103" —243.858¢ 1125~ v .

“cn T &c

H 0 . 0 R o
Upa =21, =50e1%" .2073¢7 12" _148.655¢ 111" v

H 0 . 0 R o
Upgp=2-1p=50e1%" .0808e7 118" —40.40e~ 113" v

1 (o] - 0 . o
llCc:Z|'1¢=506153 .0.938e 1103”7 _ 490 1156~ v/

A vector diagram for this condition is shown in Fig. 5.9.

When we have an open circuit of the phase A, (Fig.5.10) the working
condition also becomes asymmetrical. Hence a neutral voltage shift appears
between the neutral junctions of a generator and a load.

As U o =0, Eq.(5.5) is used in the following condition:

U, = EBXB +ECXC
N~

(5.11)
Yp+Yc+Yy
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Fig.5.10. An open circuit in the line wire Aa.

. 0 . - (0] H 0
2206 1207 .0,0033e 7127 ° 1 127¢ 10" .0 .0033e 7177
0.003 — j0.0015 +0.003 — j0.0015 +0.02 — j0.01

|
=z
Il

: —j179°
=-24.997 — j0.284 = 24.998e V.
Calculate the phase currents and the current in the neutral wire:

Ig=(Eg-Un)Yp=YUpn-Yp _0.0033e127° -(127e‘11200 _
— 24.998e 117° ) = 0,537 - j0.43=0.69e 1141 A
lc=Ec-Un)Ye=UenYe —0.0033¢127° '(127ej1200 _
—24.998¢ 1179° Y Z0.04 + j0.684 = 0.69¢ 187" A

- 0 . O i o
Iy =Up Y =0.0022e7 127" . 24.998e 7 11707 — 0550 12067 A,
Find the phase voltages and the voltage drops in line wires:

- 0 . O ) 0
Ugp =% 1p —50e193" .0.69e7 14" _345¢7188" v
i 0 1 (o] - 0
lJCC ZZI ’ I_c =50€J53 -0.69%e 187 =34.5e j140 \Vj
i 0 H 0 . 0
Upy =Zp -1p =0.69e 14" 26061237 —179.4¢~ 11187 v

i o 1 0 - 0
Ugn=2c -1, =06918" .260e 12" =179.4¢ 110" v
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The vector diagram for this case is represented in Fig. 5.11.

=en ig =

Fig. 5.11. A phasor diagram for the open circuit in the line wire Aa
5.7. Delta-Connected Load

For delta connection (Fig. 5.12), the end of the 1st load phase is
connected to the beginning of the 2nd one, the end of the latter is connected
to the beginning of the 3rd phase, and its end - to the beginning of the 1st,
thus making symmetrical cyclic junctions. The vector sum of the e.m.f.s in
a closed triangle is zero. In delta-connected load, phase currents
labs oo, lca flowing through phase impedances Zgp, Zpg, Zcq are
supplied with two-letter subscripts. The positive direction of a current flow
is assumed to be clockwise. The sequence of letters corresponds to the
direction of current flow, the first letter standing for the sending end, and
the second letter for the receiving end of a given current.

Let's mark the voltages and currents in the delta-connection:

Uag,Upc,Uca are the line voltages in a three-phase delta-

connected supply; Ugp, Uy, U, are phase voltages in the load;

I A, Ig, Ic are the line currents in line wires connecting the supply
and the load; Iy, Iy, Ic4 are phase currents in a delta-connected load.

If ZL = 0 in line wires, the line voltages in a delta-connected supply
are equal to the phase voltages in a delta-connected load: U; =U ;.

If the load is balanced, the line currents, however, \/5 times more
than the phase currents, as above for the voltages in a wye supply.



Fig.5.12. The delta connection.

If the load is unbalances, the line currents can be found in terms of
the phase currents by Kirchhoff's current law:

Ta=lap—Lea:

Ig=1lpc—lap: (5.12)
le=lea—lpe-

When there are line impedances in line wires, the line voltages across
the load aren't equal to the generator line voltages.

That is why we must at first change delta-connected load into wye-
connected one (see Fig. 5.12).

One can use the following formulas for transformation:

_ Zab Zca
Zap+Zpc+Zca
Z', = . Zpc Zab ; (5.13)
Zab tZpc tZca
7 Zca Zhe

[ ———
Zap+Zpct+ZLca

If there is a symmetrical load and the phase impedances are equal
(Zap =Zpa =Zca ), the neutral voltage shift (or the bias neutral voltage)

U y is equal to 0. Then we can calculate currents:

Ea

E E
| ,=—=A - |,=—=B . - =C 5.14
A Zy+2Z', - 519

1 lc
VAR A VAR A
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The phase currents are /3 times less the line currents and angle shift
between them is 30° (phase current leads the corresponding line current).

| a0 | a0 | i200
|, ==Agl307. | _ZBgj30". | _2CqJj30 (5.15)
~ab \/5 <bc \/5 Zca \/5
The vector diagram of currents and voltages (Fig. 5.13).
£4 Yaa

Fig. 5.13. A vector diagram for a symmetrical delta connection.

The description of the vector diagram:
Ea, Eg, Ec arethe phase e.m.f.s of a generator;

U'a, U'g,U'c are the phase voltages across a wye-connected load.
They can be found by Ohm's law:
Lla:za'l_A; Li'b:;Ib'lb; Llc:zc'lc' (5.16)
U par YUy U are the voltages across line impedances. We can
determine them by the formulas:

Upa =21 LaiUpp=2Z)-1g; U =2 -1c- (5.17)
Calculate the phase voltages across a delta-connected load. They can
befoundas U, =U', -U'; U, =U', -U',. (5.18)

Example 5.4. Symmetrical load Z ;) =Z . =Z ., = (500 — j450) Q
is connected through line wires with line impedances Z, =(35+ j45) Q to
the symmetrical generator with the phase voltage equaled to U, =380V .
Calculate phase and line currents and voltages. Draw a vector diagram.
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Solution: At first, we change a delta-connected load into a wye-
connected one (see Fig. 5.12). As we have a balanced load, one can use the
following equation:

Za
2'3=2",=2'.= 3 =166,44 — j150 = 224.23¢" j42° ¢y

Determine phase voltage across the generator and write them in a
complex form:

. 0 .
U, =380V;Ug =380e 1120 v; U =380e 20y
Define phase impedances:

i 5Q0
Z2,-2,=2,=2Z;+Z, =35+ j45+166.44— j150 = 227.36e 1 O
Calculate line currents by Ohm's law:

U H (0]
Ia=24 L_ozlﬁkﬂg Al
Za 297367128
Then
Ug U o
lg==B =167 192 p |.==C-167e4A
Zp Z,

Determine phase currents across the load by Eqg. (5.15):
- nq0
I _'—_Aejsoo _1.67el%® 0i30°
SRE 73
inn0 H 0
Iy =0.965e 192" A, 1, =0.965¢ 178 A,
Define line and phase voltages:

—0.965¢ 158 A:

. 0 . 0 . 0
Uy =Z. 1o =672.68¢ 1% .0.965¢°7 =649.14e %8 v ;

.0 -
Libc :Zbc le :64914e_J104 V ; g 26491461136 V,

cazzca'lca
U, =71, =57e152 .167ei27° 92,2718 v
Upa=411a= 1. =02. ,

L0 L
Upy=2Z,-1p =92.27e_J40 V: Uce=Z,-1¢ :92_2791200 V.
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At last, we draw a vector diagram for this case (see Fig. 5.14).

Fig. 5.14
5.8 Damage Conditions in a Delta-Connected Load

There are three damage rates in a delta-connected load:

an open circuit of any phase;

a short circuit of a phase;

an open circuit of a line wire.

The first damage condition we will consider for the case when the
phase bc is broken. Then a delta-connected load changes into asymmetrical
wye connection because we have got here an unbalanced load. Such a
delta-connected circuit is depicted in Fig. 5.15.

So, it is the asymmetrical wye connection without a neutral wire.
Hence, a neutral voltage shift appears between the two neutral nodes. We
can find it by Eq. (5.6):

U. - Ea¥a*+EsYp+EcYc
N =

Ya+tYg+Yce
where Y o Ypg Y are complex phase admittances.

The phase currents may be determined by Eq. (5.9) as
Ian=(EaA-UN)Ya Ig=(Ep-Un)-Yp, Ic=(Ec-UpN)YcT
he voltages U p,,Upg,, U, in line wires and the phase voltages
U ap U, are determined in a common way.



Ve Vggm Ug

Fig. 5.16. A vector diagram for open circuit rate.

This diagram is drawn for the unbalanced case when Z ,, #Z ., .

When we have a short circuit in the phase bc, a delta-connected
circuit will change into asymmetrical wye connection without a neutral
wire. Such a connection is depicted in Fig. 5.17. Hence, it appears the
neutral voltage shift between the two neutral nodes N and a:

EAYaA+EgYs+EcYc

Uy== '
YatYg+Ye
1 1
where Y , = = “and Y =Y =}/ are
A Z|+7;ab'zca Z) +Zanc —B ez
T ZaptZica

phase complex admittances.
Knowing the neutral voltage shift, one can determine current.
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Fig. 5.17. The circuit with a short circuit in the phase bc.
Phase currents of the wye connection are found by Ohm's law:

|y Epr-Un
- Z.n-Z
Z, + £ab "&ca
~ ZaptZca _ _
The currents in two parallel branches are determined by using so-
called "resolving of the total current” (See Ch. 3, eg. 3.32):

=(Ep-Un)Ya

Zca ol =la Zab
+Zg ZeatZap

When there is an open circuit in a line wire, a three-phase delta
connection has become an usual one-phase circuit.

Let's consider the case when the line wire Aa is broken in the circuit
with a balanced load. The circuit for this case is shown in Fig. 5.18, a. So,
now we have the one-phase circuit with the input voltage Ugc. For this case
the currents across line impedances can be determined by the formula

1., =1
~ab T XA
Zea

Zpe (Zop +2
[P _Ysc where Z g =22, | £be (Zab —Ca)_
Zeg Zhe +Zap tZcy
Then we can calculate the currents through phase impedances:
_ Upe . _ _ Uch
Toe=57 lap=lea=5— 75—
Zpc ZaptZca

;bc '(;ab +;ca)
Zhc tZab +<cy

where L_ch :—ch =lg-
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Now we can find voltages across series impedances Z 4, Z 5 -

ip
ia.b = g.:cz
o
Lpe %/{
Lr
=Fh
B)

Fig. 5.18. An open circuit in the line wire Aa.
The vector diagram for this case is shown in Fig. 5.18, b.

5.9 Active, Reactive and Apparent Power in 3-phase System

The instantaneous power for a single-phase sinusoidal source varies
itself sinusoidally at twice the frequency of the source. The expression for
the single-phase sinusoidal source can be applied to each phase of the
three-phase system.

The active power of a three-phase system is the sum of the active
powers in each phase plus the active power dissipated across the resistance
of a neutral wire (if it is not equal zero):

PZPA+PB +PC +P0 (519)
where Po is the active power in the resistance of a neutral wire.

The reactive power is the sum of the reactive powers in each phase
plus the reactive power in the reactance of a neutral wire:

Q=Qa+Qs+Qc +Qo (5.20)

where Qo is the reactive power in the reactance of a neutral wire.
The apparent (or total) power

S=4P?+Q? (5.21)

With a balanced load
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P=3Uplpcosey :\/§U|_I|_cosmp,
Q=3Uplpsingp =v3UL I singp, (5.22)
where Pp is the angle between phase voltage U, and phase current |

U, and I are line voltage and line current, respectively.

The equation for the power in a three-phase system is the same either
for a wye or a delta connection when the power is expressed in terms of
line quantities.

oial instantapenus power
FatPpntFe

Average power! phase

Before leaving this discussion on three-phase power, let us emphasize
the fact that the total instantaneous power for the three-phase system is a
constant as illustrated by Fig. 5.19. This stands in sharp contrast to the single-
phase case where the single-phase power pulsates at twice the line frequency.
Herein, then, lies another significant advantage of the three-phase system.

5.10 The Advantages of Three-phase System

The popularity of three-phase systems can be explained by the three
principal advantages they offer, namely:

(a) over long distances it is more economical to transmit alternating
current power three-phase then with any other number of phases;

(b) the components of three-phase systems, such as three-phase
induction motors and three-phase transformers, are simple to manufacture
and economical and reliable in service;

(c) given certain conditions, including a balanced load on the phases,
the instantaneous power of system remains unchanged over a period of the
sinusoid.



